
XAPP058 (v4.0) October 1, 2007 www.xilinx.com 1

© 2001, 2004, 2005, 2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks
are the property of their respective owners.

Summary The Xilinx high-performance CPLD, FPGA, and configuration PROM families provide in-system
programmability, reliable pin locking, and JTAG Boundary-Scan test capability. This powerful
combination of features allows designers to make significant changes and yet keep the original
device pinouts, thus, eliminating the need to re-tool PC boards. By using an embedded
controller to program these CPLDs and FPGAs from an on-board RAM or EPROM, designers
can easily upgrade, modify, and test designs, even in the field.

Xilinx Families

Virtex™ Series, Spartan™ Series, CoolRunner™ Series, 9500 Series, Platform Flash PROM
Family, and 18V00 Family.

Introduction The Xilinx CPLD and FPGA families combine superior performance with an advanced
architecture to create new design opportunities that were previously impossible. The
combination of in-system programmability, reliable pin locking, and JTAG test capability gives
the following important benefits:

• Reduces device handling costs and time to market

• Saves the expense of laying out new PC boards

• Allows remote maintenance, modification, and testing

• Increases the life span and functionality of products

• Enables unique, customer-specific features

The ISP controller shown in Figure 1 can help designers achieve these unprecedented benefits
by providing a simple means for automatically programming Xilinx CPLDs and FPGAs from
design information stored in EPROM. This design is easily modified for remote downloading
applications and the included C code can be compiled for any microcontroller.

To create device programming files, Xilinx provides iMPACT tool, included with the standard
Xilinx ISE™ software. The iMPACT software automatically reads standard
JEDEC/BIT/MCS/EXO device programming files and converts them to a compact binary format
XSVF format that can be stored in the on-board EPROM or RAM. The XSVF format contains
both data and programming instructions for the CPLDs, FPGAs, and configuration PROMs.
JEDEC files are the programming files converted for CPLDs, BIT files for FPGAs, and MCS/EXO
files for configuration PROMs. The 8051 microcontroller interprets the XSVF information and
generates the programming instructions, data, and control signals for the Xilinx devices.

By using a simple IEEE 1149.1 (JTAG) interface, Xilinx devices are easily programmed and
tested without using expensive hardware. Multiple devices can be daisy-chained, permitting a
single four-wire Test Access Port (TAP) to control any number of Xilinx devices or other JTAG-
compatible devices.

The files and utilities associated with this application note are available in a package for
downloading from:

ftp://ftp.xilinx.com/pub/swhelp/cpld/eisp_pc.zip

Application Note: Xilinx Families

XAPP058 (v4.0) October 1, 2007

Xilinx In-System Programming Using an
Embedded Microcontroller

R

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/swhelp/cpld/eisp_pc.zip

Programming Xilinx CPLDs, FPGAs, and Configuration PROMs

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 2

R

Programming
Xilinx CPLDs,
FPGAs, and
Configuration
PROMs

Serial Vector Format (SVF) is a syntax specification for describing high-level IEEE 1149.1
(JTAG) bus operations. SVF was developed by Texas Instruments and has been adopted as a
standard for data interchange by JTAG test equipment and software manufacturers such as
Teradyne, Tektronix, and others. Xilinx CPLDs, FPGAs, and configuration PROMs accept
programming and JTAG Boundary-Scan test instructions in SVF format, via the TAP. The timing
for these TAP signals is shown in Figure 16, page 18. Since the SVF format is ASCII and has
larger memory requirements it is inefficient for embedded applications. Therefore, to minimize
the memory requirements, SVF is converted into a more compact (binary) format called XSVF.

The iMPACT software tool, included with Xilinx ISE, automatically converts standard
JEDEC/BIT/MCS/EXO programming files into XSVF format. In this design, an 8051 C-code
algorithm interprets the XSVF file and provides the required JTAG TAP stimulus to the target,
performing the programming and (optional) test operations originally specified in the XSVF file.

Note: For a description of the SVF and XSVF commands and file formats, see [Ref 1].

The flow for creating the programming files that are used with this design are shown in Figure 2,
Figure 3, page 3, and Figure 4, page 3.

X-Ref Target - Figure 1

Figure 1: ISP Controller Schematic

P1.0
P1.1 P0.0

AD7

P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

EA
ALE

PSEN
P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0

P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
WR
RD
XTL1
XTL2

38
37
36
35
34
33
AD0
31
30
29
28
27
26
25
24
23
22
21

1
2
3
4

TCK
TMS
TDI
TDO

Test
Access

Port
to

ISP
Device

+5

2
19
5
16
6
15
9
12
11

1OE
3

18

IN OUT 8051
Program
Memory

8051 74x373

Xilinx
Data

Memory

4
17

7
14

8
13

CP

RDPSEN

Address Bus (A0-A7)

Address Bus (A8-A15)

Data Bus (D0-D7)

10

+5

5Mhz

0.1uf

19
18
17

X058_01_122700

X-Ref Target - Figure 2

Figure 2: Configuration PROM Programming File Creation and Storage Flow

Create PROM File (MCS/EXO)
 from FPGA Bitstream(s) with

iMPACT or PROMGen.

Create Intel
Hex File

Program on-board RAM
or EPROM with Hex File
containing XSVF Code

X058_04_092107

Using Xilinx ISE
Software Tools

Convert PROM File to
XSVF File Using

iMPACT

Appendix-D c-code can
be used if embedded
processor cannot convert
binary to hex.

http://www.xilinx.com

Programming Xilinx CPLDs, FPGAs, and Configuration PROMs

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 3

R

X-Ref Target - Figure 3

Figure 3: CPLD Programming File Creation and Storage Flow

X-Ref Target - Figure 4

Figure 4: FPGA Programming File Creation and Storage Flow

Create
Design

Sythesize and
 Translate Design

Generate a JEDEC
 Programming File

Create Intel
Hex File

Program on-board RAM or EPROM
with Hex file containing XSVF Code

X058_02_092007

Using Xilinx ISE
 Software Tools

Fit Design

Convert JEDEC File
 to XSVF File with

 iMPACT

Appendix-D c-code can be used
 if embedded processor cannot
convert binary to hex.

Create
Design

Translate and
Synthesize Design

MAP, PAR (Place and
Route) Design

Create Intel
Hex File

Program on-board RAM
 or EPROMwith Hex File
containing XSVF Code

X058_03_092007

Using Xilinx ISE
Software Tools

Generate Programming File
in Binary Format (bitstream)

with BitGen

Convert Bitstream to XSVF
 File Using iMPACT

Appendix-D c-code can
be used if embedded processor
cannot convert binary to hex.

http://www.xilinx.com

Programming Xilinx CPLDs, FPGAs, and Configuration PROMs

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 4

R

JTAG Instruction Summary

Xilinx devices accept both programming and test instructions using the JTAG TAP. The JTAG
commands and descriptions used for programming and functional testing are listed in Table 1:

Table 1: JTAG Instruction for Programming and Testing

Instruction Description

Instructions Supported by all Devices

EXTEST
Isolates the device I/O pins from the internal device circuitry to enable
connectivity tests between devices. It uses the device pins to apply
test values and to capture the results.

INTEST Isolates the device from the system, applies test vectors to the device
input pins, and captures the results from the device output pins.

SAMPLE/PRELOAD Allows values to be loaded into the Boundary-Scan register to drive
the device output pins. Also captures the values on the input pins.

BYPASS Bypasses a device in a Boundary-Scan chain by functionally
connecting TDI to TDO.

Instructions Common to CPLD, FPGAs, and Configuration PROMs

EXTEST
Isolates the device I/O pins from the internal device circuitry to enable
connectivity tests between devices. It uses the device pins to apply
test values and to capture the results.

IDCODE Returns a 32-bit hardwired identification code that defines the part
type, manufacturer, and version number.

HIGHZ Causes all device pins to float to a high-impedance state.

Instructions Supported by XC4000 Series, Spartan, and Spartan-XL Families Only

CONFIGURE Allows access to the configuration bus for configuration.

READBACK Allows access to the configuration bus for readback.

Instructions Supported by Virtex Series and Spartan-II/3/3E/3A/3AN Families Only

CFG_IN/CFG_OUT Allows access to the configuration bus for configuration and readback.

JSTART Clock the startup sequence when startup clock = JTAGCLK.

Commands Supported by CPLDs and Configuration PROMs

ISPEN Enables the ISP function in the XC9500/XL/XV device, floats all
device function pins, and initializes the programming logic.

FERASE Erases a specified program memory block.

FPGM
Programs specific bit values at specified addresses. An FPGMI
instruction is used for the XC95216 and larger devices which have
automatic address generation capabilities.

FVFY
Reads the fuse values at specified addresses. An FVFYI instruction is
used for the XC95216 and larger devices which have automatic
address generation capabilities.

ISPEX Exits ISP Mode. The device is then initialized to its programmed
function with all pins operable.

http://www.xilinx.com

Programming Xilinx CPLDs, FPGAs, and Configuration PROMs

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 5

R

Table 2 list instructions that are also available but are not used for programing or functional testing:

Creating an XSVF File Using iMPACT Software

This procedure describes how to create an XSVF file from a FPGA, CPLD or PROM
programming file. This flow assumes that Xilinx ISE software is being used. This software
package includes the Xilinx CPLD and FPGA implementation tools and the iMPACT
programming and file generation software.

iMPACT is supplied with both a graphical and batch user interface. The graphical tool can be
launched from the Project Manager. The batch tool is available by opening a shell and invoking
impact -batch on the command line.

Using iMPACT Batch Tool to Create XSVF Files

After generating the programming files as specified in Figure 2, page 2, Figure 3, page 3, and
Figure 4, page 3, the user can use the iMPACT batch tool to generate XSVF files:

1. Invoke the iMPACT batch tool from the command line in a new shell:

impact -batch

The following messages appear:

Release <Release Number> - iMPACT <Version Number>
Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.

2. Set up the device types and assign design names by typing following command at the
iMPACT batch prompt:

setMode -bs
setCable -port xsvf -file "c:/filename.xsvf"
addDevice -p # -file "c:/designname.xxx"

Where the # determines the position in the JTAG chain. A single device chain uses -p 1.
The extension of the file added is .jed for a CPLD, .bit for a FPGA, or a PROM file
format such as .mcs for the PROMs, or .bsd for a device being bypassed. The .bsd file
is used for a non-Xilinx device in the JTAG chain when creating the XSVF file in iMPACT.

The supported iMPACT batch commands can be found in the on-line iMPACT software
manual. The most common operations and an example are listed in Table 3, page 6. For a
detailed list of all possible options use the reference manual.

Table 2: Additional JTAG Instructions

Instruction Description

Instructions Specific to CPLDs and Configuration PROMs

USERCODE Returns a 32-bit user-programmable code that can be used to store
version control information or other user-defined variables.

Instructions Specific to XC4000 Series, Spartan and Spartan-XL Families

USER1/USER2 These instructions allow capture, shift and update of user-defined
registers.

Instructions Specific to Virtex Series and Spartan-II/3/3E/3A/3AN Families

USR1/USR2 These instructions allow capture, shift and update of user-defined
registers.

Instructions Specific to Configuration PROMs

FADDR Sets the PROM array address register.

DATA0 Accesses the array word-line register.

PROGRAM Programs the word-line into the array.

SERASE Globally refines the programmed values in the array.

http://www.xilinx.com

Programming Xilinx CPLDs, FPGAs, and Configuration PROMs

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 6

R

Table 3: Selected iMPACT Batch Commands

Command Description and Usage

erase [-o|-override] -p|-position <position> [-ver <version>]

Generates an XSVF file to describe the Boundary-Scan sequence to erase the
specified part. The -O flag is used to generate an erase sequence that overrides
write protection on devices. The -p is used to specify the position of the device in
the JTAG chain being targeted. The -ver is used to specify the design revision on
the Platform Flash PROM (XCFxxP) device to erase.

verify -p|-position <position> [-ver <version>]

Generates an XSVF file to describe the Boundary-Scan sequence to read back the
device contents and compare it against the contents of the specified JEDEC file.
The -p flag indicates the position in the JTAG chain of the device to be verified.
The -ver flag refers to the Platform Flash PROM (XCFxxP) version to be verified.

program [-e|-erase] [-v|-verify] -p|-position <position> [-u|-usercode
<codestring>][-ver <version>] [-parallel] [-loadfpga]

Generates an XSVF file to describe the Boundary-Scan sequence to program the
device using that programming data specified JEDEC/BIT/MCS/EXO file. The -p
flag refers to the JTAG chain device position. The -u refers to the usercode being
specified. The -ver refers to the version for the Platform Flash PROMs [XCFxxP]
being targeted for programming. The -parallel flag indicates the PROM parallel
configuration bit is set to load the FPGA in SelectMAP mode. The -loadfpga has
the Xilinx PROM configure the FPGA automatically after being programmed.

Recommended command for programming a CPLD or configuration PROM:
program -e -v -p 1

Recommended command for programming an FPGA:
program -p 1

readidcode -p|-position <position>

Generates an XSVF file that verifies the expected 32-bit IDCODE from the device
at <position> in the Boundary-Scan chain.

quit

Exits iMPACT batch mode.

http://www.xilinx.com

Programming Xilinx CPLDs, FPGAs, and Configuration PROMs

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 7

R

Using the iMPACT GUI to Create XSVF Files

After generating the programming files as specified in Figure 2, page 2, Figure 3, page 3, and
Figure 4, page 3, the user can use the iMPACT GUI to generate XSVF files

1. Double-click on the Configure Device [iMPACT] option under the "Generate Programming
File" process selection in the ISE Project Navigator or open a system shell and type
impact. In the iMPACT wizard select Prepare a Boundary-Scan File, and then select
XSVF from the pull-down menu as shown in Figure 5 and then click Finish.

2. Set up the mode to write to the XSVF file. At the prompt, select the XSVF file name for data
to be stored to. Click OK when the "File Generation Mode" prompt appears.

3. Set up the JTAG chain. First, specify the files for each of device in the JTAG chain. If there
is more than one device in the chain, right-click next to the device to be added and select
Add Xilinx Device or Add Non-Xilinx Device for each additional device in the JTAG chain.

Next, select the target device (it should be highlighted) and right-click to see the available
operations for the device. Select the operation(s) to be written to the XSVF file in the order
needed (Figure 6, page 8).

X-Ref Target - Figure 5

Figure 5: iMPACT Wizard

http://www.xilinx.com

Programming Xilinx CPLDs, FPGAs, and Configuration PROMs

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 8

R

4. Output → XSVF File → Stop writing to the XSVF File to exit and stop writing to the XSVF
file (Figure 7).

Notes:
1. The recommended operation for programming selected devices is Operations → Program with Erase

before Programming and Verify selected. The Verify option is not recommended for FPGA devices.
2. Select HIGHZ instead of BYPASS option from the Edit → Preferences → iMPACT → Configuration

Preferences menu if it is desired to have all the devices in the chain set to High-Z during the requested
operation.

X-Ref Target - Figure 6

Figure 6: Add Device

X-Ref Target - Figure 7

Figure 7: Add Device

X058_22_092307

X058_21_092307

http://www.xilinx.com

Hardware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 9

R

EPROM Programming

To program an EPROM, the binary XSVF file must be converted to an Intel Hex or similar
PROM format file. Most embedded processor development system software automatically
converts included binary files to the appropriate format. For systems without this capability,
refer to “Appendix D: Binary to Intel Hex Translator,” page 28 for reference C code to perform
this conversion.

Software Limitations

iMPACT can generate XSVF files only for devices for which JEDEC/BIT/MCS/EXO files can be
created. Designers should verify that the development software they are using can create
JEDEC/BIT/MCS/EXO files for the specific devices they intend to use.

Instructions on generating SVF for CoolRunner CPLDs are available on the Xilinx Support
website (http://support.xilinx.com).

Hardware
Design

As shown in Figure 1, page 2, the reference design requires only an 8051 microcontroller, an
address latch, and enough EPROM or RAM to contain both the 8051 code and the
CPLD/FPGA/PROM programming data.

Hardware Design Description
The example 8051 design allows 64K of program and 64K of data space; however, some
devices require more data space. The 8051 multiplexes port 0 for both data and addresses.
The ALE signal causes the 74x373 to latch the low-order address, and the high-order address
is output on port 2. Port 0 then floats, allowing the selected EPROM to drive the data inputs.
Then the PSEN signal goes Low to activate an 8051 program read operation, or the RD signal
goes Low to activate a CPLD programming data read operation.

Estimated EPROM Memory Requirements
Table 4 lists the estimated EPROM capacity needed to contain the programming data.

Table 4: XSVF File Sizes

Device Type File Size (bytes)

XC9536 45572

XC9572 103928

XC95108 175250

XC95144 144222

XC95216 259620

XC95288 403698

XC9536XL 38186

XC9572XL 51590

XC95144XL 78398

XC95288XL 132014

XCR3064XL 21149

XCR3128XL 40067

XCR3256XL 90042

XC18V512 338119

http://support.xilinx.com
http://www.xilinx.com

Hardware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 10

R

The XSVF file sizes are dependent only on the device type, not on the design implementation.
If further compression of the XSVF file is needed, a standard compression technique, such as
Lempel-Ziv can be used.

Modifications for Other Applications

The design presented in this application note is for a stand-alone ISP controller. However, it is
also possible to apply these techniques to microcontrollers that might already exist within a
design. To implement this design in an already existing microcontroller, all that is needed is four
I/O pins to drive the TAP, and enough storage space to contain both the controller program and
the CPLD/FPGA/PROM download data. In addition, care must be taken to preserve the JTAG
port timing.

The TAP timing in this design is dependent on the 8051 clock. For other 8051 clock frequencies
or for different microcontrollers, the timing must be calculated accordingly, in order to
implement the timing specified in “Exception Handling,” page 20.

The speed at which the TAP ports can be toggled affects the overall programming time for FPGAs
and PROMs that require millions of TCK cycles to shift just the data. For CPLDs, the cumulative
program pulse time has a greater affect on programming time than the data shift time.

Using a different microcontroller requires changing the I/O subroutine calls while preserving the
correct TAP timing relationships. These subroutine calls are located in the ports.c file. All
other C code is independent of the microcontroller and does not need to be modified.

RAM can be used instead of the EPROM in this design, allowing CPLD/FPGA/PROM devices to be
programmed and tested remotely via modem, using remote control software written by the user.

XC18V01 675399

XC18V02 1341767

XC18V04 2682183

XCS20XL 24010

XCS40XL 44186

XC2S100 103969

XC2S150 138352

XCV300 232876

XCV1000 814055

XCV100E 114943

XCV300E 249318

XCV600E 526368

XCV1000E 875119

XCV2000E 1349542

XC2V6000 397958

XC2VP7 565369

Table 4: XSVF File Sizes (Cont’d)

Device Type File Size (bytes)

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 11

R

Debugging Suggestions

The following suggestions can be helpful in testing this design:

• Decrease the TCK frequency to test that the wait times for program and erase are
sufficiently long.

• Make certain that the function pins go into a 3-state condition in ISP mode.

• Test that the function pins initialize when ISP mode is terminated with the ISPEX command.

• Verify that the devices which are not being programmed are in bypass mode. Bypass
mode causes TDO to be the same as TDI, delayed by one TCK clock pulse.

• Use the precompiled playxsvf.exe from the download package to execute the XSVF on a
PC through the Xilinx Parallel Cable III or Parallel Cable IV.

• Generate a simple XSVF that only checks the IDCODE of the target device to test basic
functionality of the hardware and software.

• Generate and execute separate XSVF files for the erase, blank check, program, and verify
operations to narrow the problem area.

• Program the device from iMPACT and a download cable to verify basic hardware functionality.

Firmware
Design

The flow chart for the C code is shown in Figure 8, page 12 through Figure 15, page 18. This code
continuously reads the instructions and arguments from the XSVF file contained in the program
data EPROM and branches in one of three ways based on the three possible XSVF instructions
(XRUNTEST, XSIR, XSDR) as described in “Appendix A: XSVF File Merge Utility,” page 22.

When the C code reads an XRUNTEST instruction, it reads in the next four bytes of data that
specify the number of microseconds for which the device stays in the Run-Test/Idle state before the
next XSIR or XSDR instruction is executed. The runTestTimes variable is used to store this value.

When the C code reads an XSIR instruction, it provides stimulus to the TMS and TCK ports
until it arrives in the Shift-IR state. It then reads a byte that specifies the length of the data and
the actual data itself, outputting the specified data on the TDI port. Finally, when all the data is
outputted to the TDI port, the TMS value is changed and successive TCK pulses are output
until the Run-Test/Idle state is reached again.

When the C code reads an XSDR instruction, it reads the data specifying the values that are
output during the Shift-DR state. The code then toggles TMS and TCK appropriately to
transition directly to the Shift-DR state. It then holds the TMS value at 0 in order to stay in the
Shift-DR state and the data from the XSVF file is output to the TDI port while storing the data
received from the TDO port. After all the data is outputted to the TDI port, TMS is set to 1 in
order to move to the Exit-1-DR state. Then, the TDO input value is compared to the TDO
expected value. If the two values fail to match, the exception handling procedure is executed as
shown in Figure 18, page 20. If the TDO input values match the expected values, the code
returns to the Run-Test/Idle state and waits for the amount of time specified by the
runTestTimes variable (originally set in the XRUNTEST instruction).

Memory Map

The 8051 memory map is divided into two 64K byte blocks: one for the 8051 program and one
for data. The 8051 program memory resides in the 8051 program block and is enabled by the
PSEN signal. The Xilinx PLD program memory resides in the 8051 data block and is enabled by
the RD signal. When additional data space is required, use one of the methodologies specified
in the specific microprocessor’s applications note.

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 12

R

Port Map

The 8051 I/O ports are used to generate the memory address and the TAP signals, as shown
in Figure 1, page 2. Port 1 of the 8051 is used to control the TAP signals; Table 5 shows the port
configuration.

Table 5: 8051 Port 1 Mapping

TAP Pin Port1 Bit Configured As

TCK 0 Input

TMS 1 Input

TDI 2 Output

TDO 3 Input

X-Ref Target - Figure 8

Figure 8: Flow Chart for the ISP Controller Code

1

3

11

6

Read instruction &
numbits from XSVF

START

switch

switch

case[]

2

Set TMS to 1, pulse
TCK twice

Read data value &
numbits from XSVF

Set TMS to 0, pulse
TCK twice

Set TMS to 1, pulse
TCK once

Set TMS to 0, pulse
TCK twice

Read delay value
from XSVF file

CLOCKRUNTEST
value based on

clock-rate & delay
value in XSVF

Read data &
numbits from XSVF

X058_08_100107

XSIR XSDR

Select-IR-Scan

XRUNTEST

Shift-IR

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 13

R

X-Ref Target - Figure 9

Notes:
1. For FPGAs, step 4 is scrapped completely if the TDO expected does not match the actual TDO; the

program quits with an error message.

Figure 9: Flow Chart for the ISP Controller Code (Continued)

3

4

Set TMS to 0, pulse
TCK - output data

on TDI

numbits=1

TDO=
TDO Expected

Pulse TCK - output
data on TDI

Store value on
TDO

Store value on
TDO

Increment
FAILTIMES

Decrement numbits

Set TMS to 0, pulse
TCK

SWITCH

WAIT XRUNTEST
TIME

Set TMS to 1, pulse
TCK

Set TMS to 1, pulse
TCK - output data

while transitioning to
Exit1-DR

X058_10_010901

Shift-DR

Update-DR

Exit1-DR

Run-Test/Idle

T

T

F

F

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 14

R

X-Ref Target - Figure 10

Figure 10: Flow Chart for the ISP Controller Code (Continued)

X-Ref Target - Figure 11

Figure 11: Flow Chart for the ISP Controller Code (Continued)

4

5

Set TMS to 0, pulse
TCK

FAILTIMES >
MAXREPEAT

END
Set TMS to 1, pulse

TCK

Set TMS to 0, pulse
TCK

Set TMS to 1, pulse
TCK

Set TMS to 1, pulse
TCK

ISP FAILED

X058_11_010901

Exit Program

Exit1-DR

Pause-DR

Exit2-DR

Shift-DR

Exit1-DR

Update-DR

T

F

11

CLOCKRUNTESTS
=CLOCKRUNTESTS X 1.25

Set TMS to 0,
pulse TCK

WAIT XRUNTEST
TIME

Run-Test/Idle

5

1

Pulse TCK
output data on TDI

Set TMS to 1, pulse
TCK - output data

while transitioning to
Exit1-IR

Set TMS to 1, pulse
TCK

numbits=1

XRUNTEST
?

Switch

T F

Set TMS to 0, pulse
TCK

GOTO
XENDIR
STATE

Decrement numbits

X058_12_010901

Exit-IR

Update IR

Run-Test/Idle

WAIT
XRUNTEST

TIME

> 0 = 0

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 15

R

Figure 12: Flow Chart for the ISP Controller Code (Continued)

7 8 9 10

12

Read data value
& numbits fom

XSVF

Set TMS to 1,
pulse TCK once

2

Set TMS to 0,
pulse TCK twice

X058_13_100107

XSDRB

Read data value
& numbits fom

XSVF

7

Set TMS to 1,
pulse TCK once

Set TMS to 0,
pulse TCK twice

9

XSDRC

Read data value
& numbits fom

XSVF

XSDRE

Read data value
& numbits fom

XSVF

2

XSDRTDOB

Read data value
& numbits fom

XSVF

XSDRTDOC

Read data value
& numbits fom

XSVF

XSDRTDOE

6

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 16

R

X-Ref Target - Figure 13

Figure 13: Flow Chart for the ISP Controller Code (Continued)

7

Set TMS to 0

XSDRC

Pulse TCK
output data on TDI

numbits=0Switch

Switch

T F

Decrement numbits

X058_14_010901

8 XSDRE

EXIT1 - DR

Pulse TCK
output data on TDI

numbits=1
T F

Set TMS to 1, Pulse
TCK-output data on

TDI while transitioning
to Exit1-DR

Set TMS to 1
pulse TCK

Go to XENDDR
state

Decrement numbits

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 17

R

X-Ref Target - Figure 14

Figure 14: Flow Chart for the ISP Controller Code (Continued)

9

Set TMS to 0

XSDRTDOC/XSDRTDOB

Pulse TCK
output data on TDI

numbits=0

TDO =
TDO expectedSwitch

T

T

F

F

Quit with
Error Message

Quit with
Error Message

Store value on TDO

Decrement numbits

X058_15_011201

10 XSDRTDOE

Pulse TCK
output data on TDI

numbits=1

TDO=
TDO Expected

T

Store value on TDO
Set TMS to 1, Pulse
TCK-output data on

TDI while transitioning
to Exit1-DR

Store value on TDO

Set TMS to 1
Pulse TCK

Go to XENDDR
state

Decrement numbits

UPDATE - DR

Switch

F

T

F

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 18

R

TAP Timing

Figure 16 shows the timing relationships of the TAP signals. The C code running on the 8051
insures that the TDI and TMS values are driven at least two instruction cycles before asserting
TCK. At that same time, TDO can be strobed.

The key timing relationships include:

• TMS and TDI are sampled on the rising edge of TCK.

• A new TDO value appears after the falling edge of TCK.

X-Ref Target - Figure 15

Figure 15: Flow Chart for the ISP Controller Code (Concluded)

X-Ref Target - Figure 16

Figure 16: Test Access Port Timing

12

Read State
Value

Hold TMS=1,
Pulse TCK

5 Times

Test-Logic-Reset Run-Test/Idle

0 1State
Value

?
Set TMS=0,
Pulse TCK

Switch

Switch

Switch

Read XENDIR
State

Switch

Read XENDDR
State

X058_16_100107

XSTATE XENDIR XENDDR

TCKMIN

TMSS TMSH

TDIS

TIOV

TDOV

TINH

TDOZXTDOZX

TINS

TDIH

TCK

TMS

TDI

TDO

Input-I/O-CLK

I/O

X058_18_122100

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 19

R

The C code ensures proper TAP timing by:

• Updating TMS and TDI on the falling edge of TCK

• Sampling TDO after a sufficient delay following the falling edge of TCK.

Parts of the XSVF file specify wait times during which the device programs or erases the
specified location or sector. Implementation of the wait timer can be accomplished either by
software loops that depend on the processor’s cycle time or by using the 8051’s built-in timer
function. In this design, timing is established through software loops in the ports.c file.TAP AC
Parameters

Figure 17 shows the XC9500/XL/XV device programming flow.

Table 6 lists the XC9500 timing parameters for the TAP waveforms shown in Figure 16. For
other device families, see the device family data sheet for TAP timing characteristics.

X-Ref Target - Figure 17

Figure 17: XC9500/XL/XV Device Programming Flow

Table 6: XC9500 Test Access Port Timing Parameters (ns)

Symbol Parameter Min Max

TCKMIN TCK Minimum Clock Period 100

TMSS TMS Setup Time 10

TMSH TMS Hold Time 10

TDIS TDI Setup Time 15

TDIH TDI Hold Time 25

TDOZX TDO Float-to-Valid Delay 35

TDOXZ TDI Valid-to-Float Delay 35

TDOV TDO Valid Delay 35

TINS I/O Setup Time 15

TINH I/O Hold Time 30

TIOV EXTEST Output Valid Delay 55

Set ISP Mode

Erase All Sectors

Program All Addresses

Verify Programming

Exit ISP Mode and
Initialize Device

ISPEN

FERASE

FPGM

FVFY (optional)

ISPEX

X058_17_122100

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 20

R

XC9500/XL/XV Programming Algorithm

This section describes the programming algorithm executed by the 8051 C code that reads the
XSVF file; this code is contained in the micro.c file in “Appendix B: C-Code Listing,” page 23.
This information is valuable to users who want to modify the C code for porting to other
microcontrollers.

The XSVF file contains all XC9500/XL/XV programming instructions and data. This allows the
TAP driver code to be very simple. The 8051 interprets the XSVF instructions that describe the
CPLD design and then outputs the TAP signals for programming (and testing) the
XC9500/XL/XV device. The command sequence for device programming is shown in.

Exception Handling

Figure 18 shows the state diagram for the internal device programming state machine, as
defined by the IEEE 1149.1 standard.

The C code drives the 1149.1 TAP controller through the state sequences to load data and
instructions, and capture results. One of the key functions performed by the C code is the TAP
controller state transition sequence that is executed when an XC9500/XL/XV program or erase
operation needs to be repeated, which can occur on a small percentage of addresses. If a
sector or address needs to be reprogrammed or re-erased, the device status bits return a value
that is different from that which is predicted in the XSVF file. In order to retry the previous
(failed) data, the following 1149.1 TAP state transition sequence is followed, if the TDO
mismatch is identified at the EXIT1-DR state:

EXIT1-DR, PAUSE-DR, EXIT2-DR, SHIFT-DR, EXIT1-DR, UPDATE-DR, RUN-TEST/IDLE

X-Ref Target - Figure 18

Notes:
1. The values shown adjacent to each transition represent the signal present at TMS during the rising edge of TCK.

Figure 18: TAP State Machine Flow

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

1

0

1
0

Run-Test/Idle

0

0

1 1 1

0

1

0

1

Exception
Handling
Loop

1

1

1 0

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

1 0

1
0

0

1

0

1

1

1

X058_19_092107

Test-Logic-Reset

http://www.xilinx.com

Firmware Design

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 21

R

The application then increments the previously specified XRUNTEST time by an additional
25 percent and waits for this amount of time in Run-Test/Idle. The effect of this state sequence
is to re-apply the previous value rather than apply the new TDI value just shifted in.

This “exception handling loop” is attempted no more than N times. If the TDO value does not
match after N attempts, the part is defective and a failure is logged. When the retry operation is
successful, the algorithm shifts in the next XSDR data.

The recommended repeat value with iMPACT svf2xsvf -r (repeat) translation for
XC9500/XL/XV devices is 16. The value for XC9500/XL/XV devices is 16.

XC4000 and Spartan/Spartan-XL Family Programming Algorithm

XC4000 Series devices can be configured through the Boundary-Scan pins. The basic
procedure is as follows:

• Power up the FPGA with INIT held Low (or the PROGRAM pin Low for more than 300 ns
followed by a High while holding INIT Low). Holding INIT Low allows enough time to issue
the CONFIG command to the FPGA. The pin can be used as I/O after configuration if a
resistor is used to hold INIT Low.

• Issue the CONFIG command to the TMS input to want to turn things red instead.

• Wait for INIT to go High.

• Sequence the Boundary-Scan Test Access Port to the SHIFT-DR state.

• Toggle TCK to clock data into TDI pin.

The user must account for all TCK clock cycles after INIT goes High, as all of these cycles
affect the Length Count compare.

For more detailed information, refer to [Ref 2]. This application note also applies to XC4000E
and XC4000X devices.

Virtex Series and Spartan-II/3/3E/3A Programming Algorithm

Virtex devices can be configured through the Boundary-Scan pins. Configuration through the
TAP uses the special CFG_IN instruction. This instruction allows data input on TDI to be
converted into data packets for the internal configuration bus.

The following steps are required to configure the FPGA through the Boundary-Scan port.

• Load the CFG_IN instruction into the Boundary-Scan instruction register (IR).

• Enter the Shift-DR (SDR) state.

• Shift a standard configuration bitstream into TDI.

• Return to Run-Test-Idle (RTI).

• Load the JSTART instruction into IR.

• Enter the SDR state (For Virtex-II devices, stay in the Run-Test/Idle state).

• Clock TCK for the length of the startup sequence.

• Return to RTI.

• Check the DONE pin status.

See [Ref 3] for details on Virtex configuration.

Notes:
1. The -fpga option is set in iMPACT when doing the XSVF translation for Virtex, XC4000, and Spartan devices.
2. The programming operation for each Virtex device ends by checking the DONE pin status. If multiple Virtex

devices are to be configured and if the DONE pins of those devices are tied together, then the DONE pin
does not go High until all the Virtex devices are configured. In this case, the check of the DONE pin status
for the intermediate Virtex devices fail. To workaround this problem, the check on the DONE pin status for
all but the last Virtex device must be removed from the SVF before translation to XSVF.

http://www.xilinx.com

Appendix A: XSVF File Merge Utility

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 22

R

CoolRunner Programming Algorithm

The CoolRunner devices can be programmed through the Boundary-Scan pins. The basic
procedure is as follows:

• Enter the device into ISP mode

• Erase the entire device

• Program all addresses

• Verify all addresses

• Exit the ISP mode and return to normal functional mode.

XC18V00 PROM Programming Algorithm

The XC18V00 devices can be programmed through the Boundary-Scan pins. The basic
procedure is as follows:

• Enter the device into ISP mode

• Erase the entire device

• Program all addresses

• Apply global operation to refine programmed values.

• Verify all addresses

• Exit the ISP mode and return to normal functional mode.

Conclusion

Xilinx CPLDs and FPGAs are easily programmed by an embedded processor. Because they
are 1149.1 compliant, system and device test functions can also be controlled by the
embedded processor, in addition to programming. This capability opens new possibilities for
upgrading designs in the field, creating user-specific features, and remote downloading of
CPLD/FPGA programs.

Appendix A:
XSVF File
Merge Utility

mergexsvf File Merge Utility

This executable takes multiple XSVF files and merges them into a single XSVF file. When the
files are merged, the XCOMPLETE commands are removed from the intermediate file images
and a header is inserted between files that resets the parameters for the following commands:
XSTATE, XENDIR, XENDDR, and XRUNTEST.

Usage:

mergexsvf [-d] [-v2] -o <output.xsvf> -i <input1.xsvf> -i <input2.xsvf>
[-i <inputN.xsvf>…]

Options:

-d – Delete pre-existing output file.

-i <inputN.xsvf> – Input files to be merged in the order listed.

-o <output.xsvf> – Merged output file.

-v2 – Generates an output file with intermediate headers that do not include the XSTATE,
XENDIR, and XENDDR commands.

Note: The input XSVF files should be generated using the -v2 option during the iMPACT svf2xsvf file
conversion.

Example:

mergexsvf –d –o merged.xsvf –i xc9536xl.xsvf –i xc18v04.xsvf

http://www.xilinx.com

Appendix B: C-Code Listing

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 23

R

Appendix B:
C-Code Listing

The following files contain the C source code used to read an XSVF file and output the
appropriate Test Access Port control bits:

C-Code Files
• lenval.c — This file contains routines for using the lenVal data structure.

• micro.c — This file contains the main function call for reading in a file from an EPROM
and driving the JTAG signals.

• ports.c — This file contains the routines to output values on the JTAG ports, to read the
TDO bit, and to read a byte of data from the EPROM.

Header Files
• lenval.h — This file contains a definition of the lenVal data structure and extern

procedure declarations for manipulating objects of type lenVal. The lenVal structure is a
byte oriented type used to store an arbitrary length binary value.

• ports.h — This file contains extern declarations for providing stimulus to the JTAG ports.

To compile this C code for a microcontroller, only four functions within the ports.c file need to
be modified:

• setPort — Sets a specific port on the microcontroller to a specified value.

• readTDOBit — Reads the TDO port.

• readByte — Reads a byte of data from the XSVF file.

• waitTime — Pauses for a specified amount of time.

Note: The waitTime function is called when the device is in Run-Test/Idle state to pause the system
for the specified amount of time. For all device families other than the Virtex-II, TCK pulses are not
required (but can occur) while the waitTime function is pausing the system. For the Virtex-II devices,
the parameter to the waitTime function must be interpreted as a minimum number of TCK pulses to
be generated. Typically, the Virtex-II devices require less than 25 TCK pulses.

Caution! THE waitTime IMPLEMENTATION MUST PAUSE FOR AT LEAST THE SPECIFIED
NUMBER OF MICROSECONDS. Verify that the waitTime implementation does not round small numbers
down to zero time. Similarly, verify that the waitTime implementation does not overflow when given large
numbers (for example, up to 140,000,000 microseconds for a Platform Flash XCF32P PROM).

The following is an example implementation of the waitTime function that is sufficient for all
Xilinx devices except for Virtex-II devices (if a more accurate timing function than the standard
sleep function, use it for improved programming performance.)

void waitTime(long microseconds)
{
 // Round up to the nearest millisecond
 sleep((microseconds + 999L) / 1000L);
}

The following are code examples for implementations of the waitTime function that handle all
the device families including the Virtex-II. For systems that can clock TCK at 1 MHz or faster,
the waitTime function can be implemented so that it generates TCK pulses equivalent to the
requested wait time:

void waitTime(long microseconds)
{
 // tckCyclesPerMicrosecond is a predetermined constant for your system
 long tckPulses = microseconds * tckCyclesPerMicrosecond;
 for (long i = 0; i < tckPulses; ++i)
 {
 pulseTCK();
 }
}

http://www.xilinx.com

Appendix C: Dynamically Selecting Target Devices for Configuration

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 24

R

For systems that can run TCK significantly slower than 1 MHz, the waitTime implementation
needs to satisfy the Virtex-II requirement for the few TCK cycles (<25) that it needs, but the
implementation should consider optimizing the wait time for the longer wait periods that other
devices require:

void waitTime(long microseconds)
{
 if (microseconds >= 50)
 {
 // Round up to the nearest millisecond and

 //use standard sleep function
 sleep((microseconds + 999L) / 1000L);
 }
 else // satisfy Virtex-II TCK clock cycles
 {
 for (long i = 0; i < microseconds; ++i)
 {
 pulseTCK();

}
}

}

For help in debugging the code, a compiler switch called DEBUG_MODE is provided. If
DEBUG_MODE is defined, the software reads from an XSVF file (which must be named
prom.bit) and prints the debugging messages. A compile switch called XSVFSIM allows the
designer to simulate the TAP outputs without a physical connection to the target device. Use
the DEBUG_MODE with the XSVFSIM switch to view the simulated TAP signal values.

Appendix C:
Dynamically
Selecting Target
Devices for
Configuration

In the default configuration flow, the complete JTAG scan chain is defined in the iMPACT
software. Designs are assigned to devices within the JTAG scan chain, and the devices to be
configured are selected prior to the creation of the SVF file. The devices selected for
configuration are called target devices. iMPACT generates an SVF file that contains a separate
set of configuration commands and data for each target device. Target devices are configured
sequentially, one device at a time. When a target device gets configured, the non-target devices
are put into bypass mode. Each set of SVF commands and data for a target device contains an
exact complement of bits corresponding to the bypassed, non-target devices. Thus, the exact
assignment of designs and exact selection of target devices must be known in advance,
because each SVF is built for a specific scan chain and specific selection of target devices.

The default configuration flow is inefficient for systems that use identical designs on multiple
FPGAs or that use multiple combinations of designs for a set of FPGAs. For systems that
configure multiple FPGAs with the same design, the SVF must still be created with separate sets
of commands and data for each FPGA. That is, the design data is duplicated for each FPGA to
be configured. For systems that use multiple combinations of designs across a set of FPGAs,
SVF files must exist for each possible combination of design assignments. Again, design data is
duplicated within the system. Because a one-to-one correspondence exists between the original
SVF file and the corresponding XSVF file used in the embedded environment, the creating of
inefficient SVF files equivalently affects the XSVF file storage requirements.

Using Dynamic Targeting to Reduce System Storage Requirements

To improve the data storage efficiency of these particular systems, a special version of the
XSVF player is included in the XAPP058 download package. This special version of the XSVF
player uses XSVF files built to configure just one device and supports the ability to dynamically
target a given XSVF file to configure any compatible device in the scan chain. Only one XSVF
file per design is required. In a system that uses identical designs on multiple FPGAs, a single
XSVF (design) file can be reused to configure all of the FPGAs. In a system that uses multiple
combinations of designs for a set of FPGAs, separate XSVF files corresponding to each design
can be dynamically selected and targeted to the FPGAs.

http://www.xilinx.com

Appendix C: Dynamically Selecting Target Devices for Configuration

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 25

R

The dynamic targeting feature reduces system storage requirements in the following systems:

• Systems in which FPGAs are configured with identical designs.

• Systems in which a set of FPGAs can be configured with multiple combinations of
selected designs.

C-Code Files for the Dynamic Targeting XSVF Player

The files for this special version of the XSVF player are located in the dynamic_target
directory from the download package. The dynamic_target directory contains two files:
micro_dynamic_target.c and micro_dynamic_target.h. These two files are modified
versions of the base micro.c and micro.h source files from the src directory in the
download package. The code in the micro_dynamic_target.c file is modified to support
dynamic selection of the device to be configured within a scan chain. The
micro_dynamic_target.h file simply contains the declaration of the modified procedural
interface that supports this dynamic targeting feature.

Substitute the dynamic_target files for the base micro.c and micro.h files in src directory to
build an XSVF player that supports the dynamic targeting feature:

• Copy dynamic_target\micro_dynamic_target.h to src\micro.h

• Copy dynamic_target\micro_dynamic_target.c to src\micro.c

Building XSVF Files for Dynamic Targeting

An XSVF file that is used to configure a dynamically selected device at run-time must contain
just the set of commands and data to configure a single, compatible device.

To create an XSVF file for dynamic targeting, use iMPACT to:

1. Define a scan chain that contains just the single device.

2. Assign the design file to the device in the scan chain.

3. Select the device as the operation target.

4. Generate the XSVF file that contains the program operation commands and data for the
assigned design.

A separate XSVF file must be created for each design used to configure a device. These XSVF
files are individually used to configure selected devices in the system.

A Primer on the Dynamic Targeting Feature

The basic commands within an XSVF file are designed to shift instruction and data bits through
the JTAG scan chain into a target device. The commands in an XSVF file built for a single-
device scan chain effectively shift the instruction and data bits directly into the JTAG ports of the
target device. To dynamically retarget a single-device XSVF file to a specific device in a multi-
device scan chain, the XSVF player must account for the shift registers of the non-target
devices in the scan chain and insert the appropriate bits before or after the target device’s
instruction or data bit sets.

The IEEE Standard 1149.1 specifies the BYPASS instruction to consist of all one-bits and the
BYPASS data register to be exactly one-bit wide. With this information, the exact bit patterns for
the bypassed, non-target devices can be calculated. During an instruction shift, one-bits must
be shifted into the instruction registers of all the bypassed, non-target devices. During a data
shift, an extra data (zero) bit must be shifted into the bypass registers of all non-target devices.

http://www.xilinx.com

Appendix C: Dynamically Selecting Target Devices for Configuration

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 26

R

Using the Special XSVF Player to Dynamically Select Target Devices

In the regular XSVF player, a pointer to the beginning of the XSVF data is first set. Then, the
start function (xsvfExecute) is called to execute the XSVF data. The same flow applies to the
special XSVF player with additional parameters that must be specified to the start function.

The primary function (xsvfExecute) that starts the special dynamic_target XSVF player is
enhanced with five additional parameters. These parameters specify the number of leading and
trailing instruction and data bits to be inserted before or after the main set of bits from the XSVF
commands. An additional parameter is accepted that aligns Virtex configuration data to a 32-bit
boundary (see [Ref 3] for additional information on the Virtex 32-bit configuration frame that
imposes the 32-bit boundary requirement on the bitstream).

The enhanced xsvfExecute function is declared in the micro_dynamic_target.h file as
follows:

int xsvfExecute(int iHir, int iTir, int iHdr, int iTdr, int iHdrFpga);

The parameters are described in Table 7.

Note: The 32-bit alignment issue applies only to the Virtex, Virtex-E, and Spartan-II device families.

Table 7: XSVF Player Parameters

Parameter Name Description

iHir Header Instruction
Register

The number of (one) bits to shift before the target set of
instruction bits. These bits put the non-target devices
after the target device into BYPASS mode.
The iHir value must be equivalent to the sum of
instruction register lengths for devices following the
target device in the scan chain.

iTir Trailer Instruction
Register

The number of (one) bits to shift after the target set of
instruction bits. These bits put the non-target devices
before the target device into BYPASS mode.
The iTir value must be equivalent to the sum of
instruction register lengths for devices preceding the
target device in the scan chain.

iHdr Header Data Register The number of (zero) bits to shift before the target set of
data bits. These bits are placeholders that fill the
BYPASS data registers in the non-target devices after
the target device.
The iHdr value must be equivalent to the sum of devices
following the target device in the scan chain.

iTdr Trailer Data Register The number of (zero) bits to shift after the target set of
data bits. These bits are placeholders that fill the
BYPASS data registers in the non-target devices before
the target device.
The iTdr value must be equivalent to the sum of devices
preceding the target device in the scan chain.

iHdrFpga Header Data Register
for the Virtex FPGA
Commands

The number of (zero) bits to shift before the target set of
Virtex FPGA data bits. These bits are used to align the
configuration bitstream for Virtex devices to a 32-bit
boundary.
The iHdrFpga value must be equivalent to 32 minus the
sum of devices preceding the target device in the scan
chain. If no devices precede the target device, the value
is zero. If the sum of devices is greater than 32, then the
value must be 32 minus the modulo [32] of the sum of
devices preceding the target device.

http://www.xilinx.com

Appendix C: Dynamically Selecting Target Devices for Configuration

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 27

R

These parameters are equivalent to the HIR, TIR, HDR, and TDR commands in the SVF
specification. See the SVF specification for further details:

http://www.asset-intertech.com/support/svf.html

From the given set of parameters, the micro_dynamic_target.c implementation automatically
adds the necessary set of complementary bits to the XSVF commands to compensate for the
bypassed devices in the scan chain.

Note: If all of the xsvfExecute parameters are equal to zero, then the special XSVF player functionality
is equivalent to the base XSVF player that takes an XSVF file created for a fully specified scan chain!
Thus, the special XSVF player with the dynamic targeting feature can be used in both the normal (fully-
specified XSVF) and special (dynamic targeting) modes.

Dynamic Target Example

To configuring four Virtex 300E devices with identical designs using a single XSVF source file,
the original XSVF file must be created using the instructions from “Building XSVF Files for
Dynamic Targeting,” page 25. Assuming the design for an XCV300E is located in the
design.bit file, the XSVF file must be created as follows:

1. Define a scan chain in iMPACT with just the single XCV300E device.

2. Assign the design.bit file to the single instance of the XCV300E in the scan chain.

3. Select the XCV300E as the operation target.

4. iMPACT generates an XSVF file to program the XCV300E with the -fpga option.

1. Reset the XSVF program pointers to point to the beginning of the XSVF data.

2. To program device #1, call the xsvfExecute function with the following parameters:

xsvfExecute(15, 0, 3, 0, 0)

3. Reset the XSVF program pointers to point to the beginning of the XSVF data.

4. To program device #2, call the xsvfExecute function with the following parameters:

xsvfExecute(10, 5, 2, 1, 31)

5. Reset the XSVF program pointers to point to the beginning of the XSVF data.

6. To program device #3, call the xsvfExecute function with the following parameters:

xsvfExecute(5, 10, 1, 2, 30)

7. Reset the XSVF program pointers to point to the beginning of the XSVF data.

8. To program device #4, call the xsvfExecute function with the following parameters:

xsvfExecute(0, 15, 0, 3, 29)

Further examples of the code for the four device Virtex scan chain and a four device XC18V00
scan chain can be found in the dynamic_target directory of the download package.

An example XSVF player executable that provides this dynamic targeting capability is available
under the playxsvf\Release_DT directory. This executable runs on a Windows
95/98/Me/NT/2000 PC with the Xilinx Parallel Cable III or Parallel Cable IV.

http://www.xilinx.com
http://www.asset-intertech.com/support/svf.html

Appendix D: Binary to Intel Hex Translator

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 28

R

Appendix D:
Binary to Intel
Hex Translator

This appendix contains C code that can be used to convert XSVF files to Intel Hex format for
downloading to an EPROM programmer. Most embedded processor code development
systems can output Intel Hex for included binary files, and for those systems the following code
is not needed. However, designers can use the following C code if the development system
they are using does not have Intel Hex output capability.

Overview

The ISP controller described in this application note allows designers to program and test
XC9500/XL CPLDs from information stored in EPROM. This information is saved in a binary
XSVF file that contains both device programming instructions as well as the device configuration
data. The 8051 microcontroller reads the EPROM (or EPROMs) that contain the XSVF file,
converts the binary information to XC9500/XL compatible instructions and data, and outputs the
programming information to the XC9500/XL device through a four-wire test access port.

After an XC9500/XL design is converted to XSVF format, the XSVF information is converted to
Intel Hex format for downloading to an EPROM programmer. The resulting EPROMs,
containing the CPLD programming information, can then be used in this ISP controller design.

/*
This program is released to the public domain. It

prints a file to stdout in Intel HEX 83 format.
*/

#include <stdio.h>

#define RECORD_SIZE0x10/* Size of a record. */
#define BUFFER_SIZE 128

/*** Local Global Variables ***/

static char *line, buffer[BUFFER_SIZE];
static FILE *infile;

/*** Extern Functions Declarations ***/

extern char hex(int c);
extern void puthex(int val, int digits);

/*** Program Main ***/

main(int argc, char *argv[])
{
int c=1, address=0;
int sum, i;
i=0;
/*** First argument - Binary input file ***/

if (!(infile = fopen(argv[++i],"rb"))) {
fprintf(stderr, “Error on open of file %s\n”,argv[i]);
exit(1);

}

/*** Read the file character by character ***/

while (c != EOF) {
sum = 0;
line = buffer;
for (i=0; i<RECORD_SIZE && (c=getc(infile)) != EOF; i++) {
*line++ = hex(c>>4);
*line++ = hex(c);

http://www.xilinx.com

References

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 29

R

sum += c; /* Checksum each character. */
}
if (i) {
sum += address >> 8;/* Checksum high address byte.*/
sum += address & 0xff;/* Checksum low address byte.*/
sum += i; /* Checksum record byte count.*/
line = buffer; /* Now output the line! */
putchar(':');
puthex(i,2); /* Byte count. */
puthex(address,4); /* Do address and increment */
address += i; /* by bytes in record. */
puthex(0,2); /* Record type. */
for(i*=2;i;i--) /* Then the actual data. */
putchar(*line++);

puthex(0-sum,2); /* Checksum is 1 byte 2's comp.*/
printf("\n");

}
}
printf(":00000001FF\n");/* End record. */

}

/* Return ASCII hex character for binary value. */

char
hex(int c)
{
if((c &= 0x000f)<10)
c += '0';

else
c += 'A'-10;

return((char) c);
}

/* Put specified number of digits in ASCII hex. */

void
puthex(int val, int digits)
{
if (--digits)
puthex(val>>4,digits);

putchar(hex(val & 0x0f));
}

References 1. XAPP503, SVF and XSVF File Formats for Xilinx Devices.

2. XAPP017, Boundary Scan in XC4000 Devices.

3. XAPP139, Configuration and Readback of Virtex FPGAs Using JTAG Boundary-Scan.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp139.pdf
http://direct.xilinx.com/bvdocs/appnotes/xapp017.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp503.pdf

Revision History

XAPP058 (v4.0) October 1, 2007 www.xilinx.com 30

R

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Revision

01/15/01 3.0 Revised Xilinx release.

06/25/04 3.1 Minor changes made.

03/11/05 3.2 Updated for Platform Flash PROMs.

10/01/07 4.0 • Updated template.
• Updated document for ISE iMPACT 9.2i support.
• Other minor edits and changes made.

http://www.xilinx.com

	Xilinx In-System Programming Using an Embedded Microcontroller
	Summary
	Xilinx Families

	Introduction
	Programming Xilinx CPLDs, FPGAs, and Configuration PROMs
	JTAG Instruction Summary
	Creating an XSVF File Using iMPACT Software
	Using iMPACT Batch Tool to Create XSVF Files
	Using the iMPACT GUI to Create XSVF Files

	EPROM Programming
	Software Limitations

	Hardware Design
	Hardware Design Description
	Estimated EPROM Memory Requirements
	Modifications for Other Applications
	Debugging Suggestions

	Firmware Design
	Memory Map
	Port Map
	TAP Timing
	XC9500/XL/XV Programming Algorithm
	Exception Handling
	XC4000 and Spartan/Spartan-XL Family Programming Algorithm
	Virtex Series and Spartan-II/3/3E/3A Programming Algorithm
	CoolRunner Programming Algorithm
	XC18V00 PROM Programming Algorithm
	Conclusion

	Appendix A: XSVF File Merge Utility
	mergexsvf File Merge Utility

	Appendix B: C-Code Listing
	C-Code Files
	Header Files

	Appendix C: Dynamically Selecting Target Devices for Configuration
	Using Dynamic Targeting to Reduce System Storage Requirements
	C-Code Files for the Dynamic Targeting XSVF Player
	Building XSVF Files for Dynamic Targeting
	A Primer on the Dynamic Targeting Feature
	Using the Special XSVF Player to Dynamically Select Target Devices
	Dynamic Target Example

	Appendix D: Binary to Intel Hex Translator
	Overview

	References
	Revision History
	Notice of Disclaimer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

