
©2012 e-Gizmo Mechatronix CentralPage 1 of 12 pages EGRF-433A1 UHF Transmitter-Receiver

EGRF-433A1

433MHz UHF ASK Data Transmitter

and Receiver
Technical Manual

Rev 1r0

EGRF-433A1 transmitter and receiver pair is a low

cost solution for radio wireless control application

circuits. Operating at 433MHz ISM frequencies,

this low power radio system has a remote operat-

!"#$%&'()$*+$,*%&$-)'"$.//$,&-&%0$!"$*1&"$2&34$

(125 meters/370 ft being typical) . The control

distance can be stretched to 175meters, if short

temporary disconnections due to RF signal drop

outs can be tolerated.

Limitations

Before we go any further, it may be a good idea to

know the EGRF-433A1 limitations. The most im-

portant thing to keep in mind is, the EGRF-433A1

is not a UART wireless cable replacement out of

the box. It is, for a fact, a data transmitter-receiver

system. But the thing is, its output is a raw, noisy,

low level RF pulses that still requires a fair amount

of signal processing before it becomes usable for

data transmission.

The reception data, if present, will be available

mixed with lots of random pulses (noise). The re-

ceiving MCU is expected to process the reception

data to extract its content and examine the data if

!-$!0$+%&&$+%*,$&%%*%$'"4$2-$+*%$50&6$7&"(&$!-$-%'"0-

mits and receives data in a way not compatible

with any UART protocol.

Programming an MCU to work with EGRF-433A1

does not sound so easy, and the fact is, it is really

not. Arduino and gizDuino users are quite fortu-

nate though. Someone already built a collection of

routines to carry out these tasks, called the Vir-

tualWire library. With the use of this library, using

EGRF-433A1 with Arduino and gizDuino becomes

as straightforward and painless even for begin-

ners.

Figure 1. The EGRF-433A1 UHF Receiver (larger of the

two) and Transmitter Module.

Figure 2. e-Gizmo Remote Controller with VirtualWire

!"#$%&'()*+$,"&"!")+-,#.%,*+-&&*/+.'&0+12345677895:+

transmitter module, ready for a gizDuino based wireless

remote robot control application.

©2012 e-Gizmo Mechatronix Central Page 2 of 12 pagesEGRF-433A1 UHF Transmitter-Receiver

EGRF-433A1-T TRANSMITTER CIRCUIT

The transmitter module is based on Micrel’s UHF

transmitter MICRF113. This is a very stable UHF

oscillator locked to a crystal frequency. It is ca-

pable of delivering RF output of up to 10dbm,

although in our circuit, actual RF output is about 3

-*$849$3&00$:&('50&$*+$&;-&%"'3$(*,1*"&"-0$!"<5-

ence.

The transmitter is ASK pulse modulated by ap-

plying LVTTL level pulses at the TXIN input. TXIN

input is non linear. Basically, what the input pulses

does is turn ON and OFF the transmitter at a suc-

cession to effect ASK transmission.

Table 1. Interface Port P1

PIN ID Description

1 +3v3 Power Input, 1v8 to 3v6 volts

2 GND Power Ground

3 No connection

4 TXIN ASK Data Pulse input

TXIN

GND
+3V3

WIRE
ANTENNA

(SEE TEXT)

P1

Figure 3. The transmitter module is crystal locked in frequency, ensuring a stable and more reliable

&,%;<#'&&';=+>?;!&'";@+8))+*A&*,;%)+!"#$";*;&<+%,*+-A*/+';+B%)?*@+C"&0';=+!%;+(*+%!!'/*;&%))D+/*&?;*/@

Figure 4. The transmitter module component layout. A

stranded core insulated wire cut to 17cm in length can

be used as an antenna.

©2012 e-Gizmo Mechatronix CentralPage 3 of 12 pages EGRF-433A1 UHF Transmitter-Receiver

EGRF-433A1-R RECEIVER CIRCUIT

The receiver module is built around ATA3741, a

UHF receiver circuit capable of demodulating ei-

ther an ASK or FSK signal. The receiver frequency

is likewise crystal locked to keep the frequency

from wandering off and getting out of tune with the

transmitter.

The output of the ATA3741 is already in the form of

digital pulses. But as it is, it is not ready for use. As

I already mentioned, we could expect a data out-

put mixed with all sorts of noise. Hence, to ensure

succesful data transfer, the receiver hosts MCU

need something it could easily recognize from

noise to get it start processing of reception data

and deal with the separation of data from noise

more effectively. For this, the data packet is send

by the transmitting device with extra payloads for

synchronization and error detection. The payload

depends on the protocol used. Following is the

scary detail.

VirtualWire starts transmission by sending a series

of synchronization pulses, 18 pairs of 1 and 0s to

be exact. The hosts MCU running the VirtualWire

reception routine continuously checks for this

sync pulses, and will only start processing upon

the detection of sync signal. The sync pulses are

immediately followed by a start marker - a 12bit

pulse pattern, the number of bytes to transmit, and

the data stream itself. Transmission is concluded

with a 4 byte CRC that must be used by the host

controller to validate the data.

="4$>&$'%&$"*-$2"!0)&4$?&-6$=33$4'-'$'+-&%$-)&$0-'%-$

marker are encoded in 4b/6b format in order not

the upset the DC bias of the ATA3741 receiver

PLL circuit. Any undesired DC bias within the PLL

control loop will almost guarantee a data lost.

Fortunately for Arduino and gizDuino program-

mers, you need not worry about these details. Eve-

ry complicated thing just mentioned had already

been taken cared of by the VirtualWire library, so

that you don’t have to. It is a free Arduino IDE add-

on library that can work with EGRF-433A1 wireless

hardware. If you haven’t done so, now is the good

time to download this library.

Users of non-Arduino compatible platform/MCUs

are not as lucky, and may have to do the dirty work

themselves. For now, Google is your best friend.

Figure 5. A snapshot of an oscilloscope trace of a EGRF-433A1-T transmitter module sending the mes-

sage “123456”. The lower trace is the expanded highlighted portion of the packet. The lower trace clearly

<0".<+&0*+<D;!0,";'E%&'";+$?)<*<F+&0*+9G5('&+<&%,&+#%,H*,F+*;!"/*/+$%D)"%/+<$*!'-*,F+%;/+$",&'";<+">+&0*+

payload itself.

©2012 e-Gizmo Mechatronix Central Page 4 of 12 pagesEGRF-433A1 UHF Transmitter-Receiver

Table 2. P1 Interface Port

PIN ID DESCRIPTION

1 DEM Analog Demodulator Output

2 EN Enable Input, Normally open (“1”)

3 N.C. No connection

4 DATA Data Output

5 GND Common Ground

6 Vcc +5V Power Input

Vcc
GND

DATA
N.C.

EN
DEM

WIRE
ANTENNA

(SEE TEXT)

4'=?,*+I@+123456778953+3*!*'B*,+J"/?)*+<!0*#%&'!@+K'H*+'&<+&,%;<#'&&*,+$%',F+&0*+!',!?'&+?<*<+-A*/+

valued components even on RF section. This is a PLL receiver circuit frequency locked to a crystal

,*>*,*;!*@+L&+'<+!";-=?,*/+>",+8MN+,*!*$&'";F+(?&+?<*,<+!%;+!";-=?,*+'&+';+4MN+#"/*+(D+';<&%))';=+

OP9@+C"&*+&0%&+4MN+.'))+;"&+.'&0+12345677895:+&,%;<#'&&*,+#"/?)*@

Figure 7. EGRF-433A1-R Receiver Module components

layout. The antenna can likewise be fashioned out of a

17cm length of stranded insulated wire.

©2012 e-Gizmo Mechatronix CentralPage 5 of 12 pages EGRF-433A1 UHF Transmitter-Receiver

APPLICATION EXAMPLES

To use the EGRF-433A1 with your gizDuino, you

need to integrate the VirtualWire library with your

current Arduino IDE installation. Installing Virtual-

Wire Libraries to your Arduino IDE requires only a

couple of steps:

1. Download the latest VirtualWire library from

http://www.open.com.au/mikem/arduino/

@6$A"B!1$-)&$23&$'"4$(*1?$-)&$>)*3&$C!%-5'3D!%&$

folder to your Arduino IDE directory libraries sub-

folder (e.g. E:\arduino-1.0.1\libraries)

This library will run with all gizDuino platform,

including the minis.

Transmitter Application Example

The transmitter circuit requires just one I/O line

driving the TXIN. Any DIO can be used to drive the

TXIN. But it is probably a good idea to keep the

TXIN

GND

+3V3

P1

UART port pin 0, pin 1, and pin 2 of the gizDuino

free. The UART port is one of the most useful

features of a microcontroller. A lot of devices would

want to connect in the UART port. And it is not

needed for EGRF-433A1 to work, although you

can use it with equal ease if you want to. It will

just be a waste. You will never know when you will

need it for other devices.

In the following example, it is connected to pin 14.

An Arduino sample sketch for the transmitter is

shown in the following page.

4'=?,*+Q@+1A%#$)*+">+%;+12345677895:+&,%;<#'&&*,+#"/?)*+.',*/+.'&0+='ER?';"S+#"/?)*@+C**/)*<+&"+

say, this setup will work with any Arduino and compatible module as well, not just with the gizDuino+.

User can freely use any other DIO pin other than the one shown in this example.

©2012 e-Gizmo Mechatronix Central Page 6 of 12 pagesEGRF-433A1 UHF Transmitter-Receiver

/* Sample Arduino Sketch for

* e-Gizmo EGRF-433A1-T

* UHF Transmitter Module

* Using VirtualWire Protocol

*

* This will work with all gizDuino and Arduino platform

*/

#include <VirtualWire.h>

// DIO txpin assignment. Change pin assignment if you want to

const byte txpin=14; // tx pin assigned to DIO 14

void setup()

{

 vw_setup(4800); // Transmission speed at 4800bps

 vw_set_tx_pin(txpin); //tell VirtualWire which pin to use

$$$$1!"E*4&F-;1!"GHAIJAIKL$$MMN*"2#5%&$-)!0$1!"$'0$'"$*5-15-6$C!%-5'3D!%&$>!33$"*-$4*$!-$+*%$?*5

}

void loop()

{

 char *msg=”123456”; // test message “123456”

 // Send message via VirtualWire

 vw_send((uint8_t *)msg, strlen(msg));

 // That’s it!

 delay(300);

 }

©2012 e-Gizmo Mechatronix CentralPage 7 of 12 pages EGRF-433A1 UHF Transmitter-Receiver

Vcc
GND

DATA
N.C.

EN
DEM

WIRE
ANTENNA

(SEE TEXT)

Receiver Application Example

The receiver circuit, as a minimum, requires just

one gizDuino DIO to implement. The host control-

ler (gizDuino) running the VirtualWire services

1&%!*4!('33?$()&(O0$-)&$01&(!2&4$PQH6$Q+$'"$!"(*,-

ing stream is detected, it processes the data, get

rid of the noise, checks for data integrity, and then

expose the clean receive data to a running user

codes. All complex tasks are done by the Virtual-

Wire for you.

Control to the receiver ENable pin is not neces-

sary, but is highly recommended. The EGRF-

433A1 DATA output pin, as repeatedly mentioned,

is littered with random noise pulses. Even with the

absence of incoming signal, the DATA output never

cease going from state to state (Fig. 11). This will

conceivably put a burden in the MCU hosts, with

the effect showing as system slowing down. The

Enable pin helps minimize this. It works by keeping

the DATA output silent (no pulses) when nothing is

being sent from the transmitter side (Fig. 10). This

is possible because the ATA3741 chip used in the

receiver module has a built-in function that can

detect the synchronization start pulse on its own.

To use it, the host MCU must pull down Enable pin

for a short moment after the completion of a data

packet reception.

An Arduino demo sketch for the receiver module is

shown in the following pages.

Figure 9. EGRF-433A1-R Receiver Module on a gizDuino+. As in the transmitter wiring example, users

can freely choose a different DIO if the application circuit so requires. But remember to modify the pin as-

<'=;#*;&+";+D"?,+8,/?';"+MH*&!0+%!!",/';=)D@

©2012 e-Gizmo Mechatronix Central Page 8 of 12 pagesEGRF-433A1 UHF Transmitter-Receiver

Figure 10. Oscilloscope trace of receiver DATA output with Enable pin in use. The Enable func-

tion mutes the DATA output after completing reception of a data packet, and then restart DATA

output by itself upon detection of an incoming transmission.

Figure 11. You can leave out the Enable function. But this is what will happen in the DATA

output. Random noise pulses keeps coming out of the DATA pin even in the absence of an

incoming signal. This may present a unnecessary burden that could slow down the process-

ing speed of the hosts MCU.

©2012 e-Gizmo Mechatronix CentralPage 9 of 12 pages EGRF-433A1 UHF Transmitter-Receiver

/* Demo Rx program for e-Gizmo EGRF-433A1-R UHF Rx module *

* by e-Gizmo Mechatronix Central

*

* using VirtualWire Libraries

*

* This sample program dumps Rxed data to serial port.

* Monitor received data by using the IDE Serial Monitor

*/

#include <VirtualWire.h>

const byte rxpin=11; // DIO pin 2 for Rx

const byte rxenable=7; //DIO pin 7 for Rx Enable

const byte ledpin=13; // Built in LED

/* EGRF-433A1-R Speed settings */

// select 9600bps or 4800bps

// Make sure only one group is uncommented

// Uncomment next two lines if you want to set speed to 9600baud

//unsigned int spattern=0x7810; //BR_Range3

//unsigned int lpattern=0x2ee0; // bit check limit 46-56

//Uncomment next two lines for 4800 baud

unsigned int spattern=0x6810; //BR_Range2

unsigned int lpattern=0x2FD8; // bit check limit for 4500-5100 bps

byte bitctr=14;

void setup()

{

 pinMode(rxenable,OUTPUT); // EGRF-433A1 DIO for ENable pin

 ATA3741(); // setup Rx module ATA3741 chip

 // UART is used for this demo to allow visual display

 // of Rxed data via Arduino IDE Tools>Serial Monitor

 // Otherwise, it is freely available for other purpose

 Serial.begin(9600);

 // Apply VitualWire settings

 vw_setup(4800); // Bits per sec

 vw_set_rx_pin(rxpin);

 vw_rx_start(); // Start the receiver PLL running

 pinMode(ledpin,OUTPUT); // LED

}

©2012 e-Gizmo Mechatronix Central Page 10 of 12 pagesEGRF-433A1 UHF Transmitter-Receiver

void loop()

{

 uint8_t buf[VW_MAX_MESSAGE_LEN];

$$$$5!"-RS-$:5<&"$T$CDSE=USEVWW=XVSYVZL

 int i;

$$$$$!+$F[>S#&-S,&00'#&F:5+G$\:5<&"KK]$$MM$4'-'$'['!3':3&^

$$$$$$$$4!#!-'3D%!-&F._G$7QX7KL$$$$$$$$$MM$<'0)$HZ$YVP

 // And dump Rxed data to serial port

 // Rxed data are stored in buf[] memory

 Serial.print(“Rx Data: “);

$ +*%$F!$T$/L$!$`$:5<&"L$!aaK

 {

 Serial.print((char)buf[i]);

 }

 Serial.println(“”);

 digitalWrite(rxenable, LOW); // Reset EGRF-433A1-R

 digitalWrite(13, LOW); // Flash OFF LED indicator

 digitalWrite(rxenable, HIGH); //Re enable to receive next data packet

 }

}

/* EGRF-433A1-R Hardware Initialization Routines

b$$N*"2#5%&$-)&$=I=_c8.$()!1

* to start RX activity

*/

void ATA3741(void){

 digitalWrite(rxenable,HIGH);

$$MM$Q"!-!'-&$=I=_c8.$(*"2#5%'-!*"$,*4&$:?

 // forcing DATA pin low for 15ms

 pinMode(rxpin,OUTPUT); // Change DATA pin direction to OUTPUT

 digitalWrite(rxpin,LOW);

 delayMicroseconds(15000);

 digitalWrite(rxpin,HIGH);

 pinMode(rxpin,INPUT);

 digitalWrite(rxpin,LOW);

 // wait for t2

 bitctr=14;

 // send 14 bits init pattern

 while(bitctr>0){

©2012 e-Gizmo Mechatronix CentralPage 11 of 12 pages EGRF-433A1 UHF Transmitter-Receiver

 while(digitalRead(rxpin)==HIGH);

 if((spattern & 0x8000)==0)

 ATA3741_LO();

 else

 ATA3741_HI();

 bitctr--;

 spattern=spattern<<1;

 }

 delayMicroseconds(15000);

$$MM$J5-$:'(O$=I=_c8.$!"$(*"2#$,*4&

 pinMode(rxpin,OUTPUT);

 digitalWrite(rxpin,LOW);

 delayMicroseconds(1000);

 digitalWrite(rxpin,HIGH);

 pinMode(rxpin,INPUT);

 digitalWrite(rxpin,LOW);

 // Enter 14-bit bit check limits pattern

 bitctr=14;

 while(bitctr>0){

 while(digitalRead(rxpin)==HIGH);

 if((lpattern & 0x8000)==0)

 ATA3741_LO();

 else

 ATA3741_HI();

 bitctr--;

 lpattern=lpattern<<1;

 }

}

// Output a logic low

void ATA3741_LO(void){

 // wait until rxpin goes hi

 while(digitalRead(rxpin)==LOW);

 delayMicroseconds(131);

 pinMode(rxpin,OUTPUT); // output a low

 delayMicroseconds(150); // for 150uS

 pinMode(rxpin,INPUT);

 delayMicroseconds(50);

}

// Output a logic high

void ATA3741_HI(void){

 // Since rxpin should be normally at logic high

 // just wait if necessary until rxpin goes high

 while(digitalRead(rxpin)==LOW);

}

©2012 e-Gizmo Mechatronix Central Page 12 of 12 pagesEGRF-433A1 UHF Transmitter-Receiver

Figure 12. EGRF-433A1-T Transmitter Module PCB artwork.

BOTTOM

TOP

BOTTOM

TOP

Figure 12. EGRF-433A1-R Receiver Module PCB artwork.

PCB ARTWORK

